Phosphorylation of FE65 Ser610 by serum- and glucocorticoid-induced kinase 1 modulates Alzheimer's disease amyloid precursor protein processing

نویسندگان

  • Wan Ning Vanessa Chow
  • Jacky Chi Ki Ngo
  • Wen Li
  • Yu Wai Chen
  • Ka Ming Vincent Tam
  • Ho Yin Edwin Chan
  • Christopher C.J. Miller
  • Kwok-Fai Lau
چکیده

Alzheimer's disease (AD) is a fatal neurodegenerative disease affecting 36 million people worldwide. Genetic and biochemical research indicate that the excessive generation of amyloid-β peptide (Aβ) from amyloid precursor protein (APP), is a major part of AD pathogenesis. FE65 is a brain-enriched adaptor protein that binds to APP. However, the role of FE65 in APP processing and the mechanisms that regulate binding of FE65 to APP are not fully understood. In the present study, we show that serum- and glucocorticoid-induced kinase 1 (SGK1) phosphorylates FE65 on Ser(610) and that this phosphorylation attenuates FE65 binding to APP. We also show that FE65 promotes amyloidogenic processing of APP and that FE65 Ser(610) phosphorylation inhibits this effect. Furthermore, we found that the effect of FE65 Ser(610) phosphorylation on APP processing is linked to a role of FE65 in metabolic turnover of APP via the proteasome. Thus FE65 influences APP degradation via the proteasome and phosphorylation of FE65 Ser(610) by SGK1 regulates binding of FE65 to APP, APP turnover and processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

JNK-interacting protein-1 promotes transcription of A protein precursor but not A precursor-like proteins, mechanistically different than Fe65

Processing of the amyloid protein precursor (A PP) by the and secretases leads to the production of two small peptides, amyloid and the A PP intracellular domain (AID, or called elsewhere AICD). Whereas the role of amyloid in the pathogenesis of Alzheimer’s disease has been studied extensively, only recently has information begun to accumulate as to the role of AID. Functions identified for AID...

متن کامل

FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein.

Increasing evidence has implicated the low density lipoprotein receptor-related protein (LRP) and the adaptor protein FE65 in Alzheimer's disease pathogenesis. We have shown previously that LRP mediates beta-amyloid precursor protein (APP) processing and affects amyloid beta-protein and APP secretion and APP-c-terminal fragment generation. Furthermore, LRP mediates APP processing through its in...

متن کامل

Structure of the intracellular domain of the amyloid precursor protein in complex with Fe65-PTB2.

Cleavage of the amyloid precursor protein (APP) is a crucial event in Alzheimer disease pathogenesis that creates the amyloid-beta peptide (Abeta) and liberates the carboxy-terminal APP intracellular domain (AICD) into the cytosol. The interaction of the APP C terminus with the adaptor protein Fe65 mediates APP trafficking and signalling, and is thought to regulate APP processing and Abeta gene...

متن کامل

Regulation Fe65 localization to the nucleus by SGK1 phosphorylation of its Ser566 residue.

Fe65 is characterized as an adaptor precursor (APP) through its PID2 element, as well as with the other members of the APP protein family. With the serum- and glucocorticoid-induced kinase 1 (SGK1) substrate specificity information, we found that the putative site of phosphorylation in Fe65 by SGK1 is present on its Ser(566) residue in (560)CRVRFLSFLA(569)(X60469). Thus, we demonstrated that Fe...

متن کامل

Dexras1 interacts with FE65 to regulate FE65-amyloid precursor protein-dependent transcription.

FE65 is an adaptor protein that binds to and forms a transcriptionally active complex with the gamma-secretase-derived amyloid precursor protein (APP) intracellular domain. The regulatory mechanisms of FE65-APP-mediated transcription are still not clear. In this report, we demonstrate that Dexras1, a Ras family small G protein, binds to FE65 PTB2 domain and potently suppresses the FE65-APP-medi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 470  شماره 

صفحات  -

تاریخ انتشار 2015